Fast Feature Detection with a Graphics Processing Unit Implementation

نویسندگان

  • Charles Bibby
  • Ian Reid
چکیده

We present a fast feature detector that uses the Graphics Processing Unit (GPU) to extract distinctive features from an image, which are suitable for reliable matching between different views of an object or a scene. This detector is a particularly useful tool for the computer vision community because it is: (i) simple to implement; (ii) extremely fast; (iii) operates stand alone requires no post-processing or filtering of detected features. We compare the fast feature detector to other similar published algorithms and demonstrate that it extracts features in desirable/salient locations, repeatedly and more rapidly than other scale-space detectors. We further describe implementations of two demanding real-time application scenarios: (i) real-time detection and tracking of multiple visual targets; (ii) real-time visual SLAM, with the results of each confirming the efficacy of the new features. In this latter application we make a comparison between full frame feature detection and Davison’s [3] active search technique and discuss the trade off between the two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Fast Pedestrian Detection with Adaboost Algorithm Using GPU

Pedestrian detection is one of the hot research problems in computer vision field. The Cascade AdaBoost System is a commonly used algorithm in this region. However, when the training datasets become larger, it is still a time consuming process to build one Adaboost classifier. In this paper we detail an implementation of the AdaBoost algorithm using the NVIDIA CUDA framework based on the haar f...

متن کامل

آشکارسازی سیگنال بر اساس پردازش موازی مبتنی بر جی‌پی‌یو در شبکه‌های حس‌گری صوتی دارای زیرساخت

Nowadays, several infrastructure-based low-frequency acoustical sensor networks are employed in different applications to monitor the activity of diverse natural and man-made phenomena, such as avalanches, earthquakes, volcanic eruptions, severe storms, super-sonic aircraft flights, etc. Two signal detection methods are usually implemented in these networks for the purpose of event occurrence i...

متن کامل

Parallelization and Optimization of Feature Detection Algorithms on Embedded GPU

In this paper, we parallelize and optimize the popular feature detection algorithms, i.e. SIFT and SURF, on the latest embedded GPU. Using conventional OpenGL shading language and recently developed OpenCL as the GPGPU software platforms, we compare the implementation efficiency and speed performance between each other as well as between GPU and CPU. Experimental result shows that implementatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006